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PREPARATION OF METALS BY
MAGNESIUM-ZINC REDUCTION

Part III. Reduction of Plutonium Dioxide

by

J. B. Knighton and R. K. Steunenberg

ABSTRACT

Plutonium metal had been prepared on a laboratory
scale by the direct reduction of plutonium dioxide with liquid
magnesium-zinc alloy inthe presence of fluxes composed of
alkali and alkaline earth halides. The reduction rate of plu-
tonium dioxide, unlike those of uranium and thorium oxides,
was relatively independent of the flux composition. The most
satisfactory reductions at 800°C were obtained with a mag-
nesium concentration of about 10 w/o in the liquid-metal
phase. A 30-gram ingotof metallic plutonium was produced
by vacuum distillation of magnesium and zinc from the liquid-
metal product solutions. The use of plutonium dioxide instead
of fluorides as the starting material has the advantage of a
greatly decreased neutron-emission hazard resulting from
(a,n) reactions. Plutonium losses arising from incomplete
reduction in this process were less than 1%.

I. INTRODUCTION

Previous investigations had shown that uranium and thorium oxides
and fluorides (U;O0g, UO,;, UF,, ThO,, ThF,) are reduced to the corresponding
metals in good yield by liquid magnesium-zinc alloy in the presence of a
suitable halide flux.!’? In view of the successful reductions of these metals
by this technique, a similar but less extensive study was undertaken on
the reduction of plutonium dioxide.

The current method used for the production of plutonium metal
consists of a bomb reduction of plutonium tetrafluoride by calcium, with
iodine added as a booster to increase the temperature of the reaction. gl
Although a variety of other reducing agents, including lithium, sodium,
potassium, magnesium, barium, aluminum, carbon, and beryllium, have been
used to reduce plutonium dioxide and halides, calcium has generally proved
to be the most satisfactory.’"® Bomb reductions of plutonium dioxide have
been attempted at various times, but this procedure yields an unrecoverable
powder because the heat of reaction is insufficient to melt the slag.’
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Plutonium trichloride can be reduced satisfactorily, but it has the undesir-
able property of being extremely hygroscopic. Although plutonium tetra-
fluoride is the most suitable material for the bomb-reduction technique,

it has the disadvantage that a substantial neutron flux results from the
nuclear reaction ?F(a, n)*’Na.

II. EXPERIMENTAL PROCEDURE

The equipment used for the plutonium dioxide reduction studies
consisted of a resistance-heated, stainless-steel, tilt-pour furnace® located
inside a high-alpha glovebox facility. The reaction was conducted in a
tantalum crucible inside a graphite secondary vessel. Provisions were
made to measure and control the temperature, to sample the flux and metal
phases, and to maintain an argon atmosphere.

To perform a reduction, a charge consisting of zinc, plutonium
dioxide, and the desired flux was added to the tantalum crucible at room
temperature and heated to 800°C under an argon atmosphere. Mixing was
then started, and the magnesium metal was added. The time of magnesium
addition was considered to be the starting time of the reduction. Metal
samples were then taken after 15, 30, 60, and 120 min by withdrawing the
liquid metal through a porous tantalum filter into a tantalum tube. Unfiltered
flux samples were taken at 120 min in open-end tantalum tubes.

When the reduction was completed, the molten contents of the
tantalum crucible were poured into a graphite mold. After the equipment
had cooled overnight, it was disassembled and the flux was separated from
the plutonium-magnesium-zinc ingot. The metallic plutonium product was
recovered by vacuum distillation of the zinc and magnesium and consolidated
by melting.

Except where indicated otherwise, the experimental conditions (tem-
perature, 800°C; mixing rate, 800 rpm; charge size, 300 g of flux and 600 g
of zinc-magnesium alloy; atmosphere, argon) were held constant throughout
the study. Sufficient plutonium dioxide was used to produce a plutonium
concentration of 1.0 w/o in the zinc-magnesium alloy upon complete reduc-
tion of the oxide., This plutonium concentration was well below an estimated
solubility limit for plutonium in the zinc-magnesium alloy. In one demon-
stration experiment, enough plutonium dioxide was used to produce 30 g of
metallic plutonium.,

The zinc and magnesium used in the reductions were of purities
greater than 99.999 and 99.95%, respectively. The flux constituents were
anhydrous reagent-grade salts, except for the magnesium chloride, which
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was anhydrous material obtained from commercial sources as a by-
product of the reduction of zirconium tetrachloride by magnesium metal.
The plutonium dioxide was standard production-grade material with a
plutonium content of 84.1 W/O.

III. RESULTS

A, Flux Composition

The effect of flux composition on the reduction rate of plutonium
dioxide was investigated, using a zinc-5 w/o magnesium alloy as the
reductant. Five experiments were performed with fluxes that had given
both good and poor reductions of uranium and thorium oxides. The results
are listed in Table I. Nearly complete reduction of the plutonium dioxide
occurred in all cases. Subsequent examination of product ingots showed
that the plutonium content of the flux was a more reliable measure of the
extent of reduction than that of the filtered metal samples. The flux
samples indicated that all of the reductions were at least 99% complete
after 120 min. The plutonium concentrations in the metal samples were
somewhat low, apparently because a small amount of the plutonium reacted
with the tantalum container to form an insoluble plutonium-tantalum inter-
metallic compound. Nevertheless, the metal samples were useful in showing
that all of the reductions were nearly complete in 30 min or less.

Table I

EFFECT OF FLUX COMPOSITION ON THE REDUCTION RATE
OF PLUTONIUM DIOXIDE

Temperature: 800°C
Mixing Rate: 800 rpm

Metal: 600 g Zn-5 w/o Mg
Flux: 300 g, composition as shown
Oxide: 7.13 g PuO,

Percent Reduction of PuO,,

Percent of Initial
Metal Samples

Pu in Flux at

Flux (m/o) 15 min 30 min 60 min 120 min 120 min
95.0 MgCl,-5.0 MgF, 96 97 o8 94 0.5
47,5 CaCl,-47.5 MgCl,-5.0 MgF, g5 2 95 97 (05129
47.5 LiCl1-47.5 CaCl,-5.0 MgF, - 98 93 - 0.04
47,5 KC1-47.5 CaCl,-5.0 MgF, 94 96 96 96 0.2
47,5 KC1-47.5 LiCl-5.0 MgF, - 95 92 et 0.2

The result that the reduction rate was independent of flux com-
position was unexpected in view of the strong dependence observed in the
reductions of uranium and thorium oxides. In particular, magnesium
chloride, which was an essential flux ingredient for uranium and thorium
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oxide reductions, appeared to contribute nothing to the reduction of
plutonium dioxide; it may be a somewhat undesirable constituent. Examples
of differences in the reduction behavior of U;Og, thorium dioxide, and
plutonium dioxide with various fluxes are illustrated in Table II.

Table II

COMPARATIVE REDUCTION RATES OF THORIUM, URANIUM,
AND PLUTONIUM OXIDES

Percent Reduction in 120 min

Flux (m/o) ThO,? U,04® PuO,P
95.0 MgCl1,-5.0 MgF, 27.0 Gllsch GLk
47,5 LiCl1-47.5 CaCl,-5.0 MgF, 15.0 56.0 Chhr
47,5 KC1-47.5 CaCl,-5.0 MgF, No data 21 .4 99+
47,5 KC1-47.5 LiCl-5.0 MgF, =350 3.0 99+

2Air atmosphere,
bArgon atmosphere; results based on flux analyses.

B. Magnesium Concentration

The effect of magnesium concentration in the zinc phase on the
reduction of plutonium dioxide was investigated, using a flux consisting of
47,5 m/o CaCl,, 47.5 m/o MgCl,, and 5.0 m/o MgF,. The results are given
in Table III. It is not immediately obvious, from the plutonium concentra-
tions in the metal and flux samples, that the magnesium content of the
metal phase had a significant effect. However, if these data are expressed

Table III

EFFECT OF MAGNESIUM CONCENTRATION ON THE REDUCTION RATE
OF PLUTONIUM DIOXIDE

Temperature: 800°C
Mixing Rate: 800 rpm

Metal: 600 g Mg-Zn alloy
Flux: 300 g 47.5 m/o MgCl,-
47,5 m/o CaCl,-5.0 m/o MgF,
Oxide: 7.13 g PuO,
Percent Reduction of PuO,, D et B eIt : L
Metal Samples : w/o Pu in flux
Mg Conc'n, Pu in Flux at R e
in Zn (w/o) 15 min 30 min 60 min 120 min 120 min w/o Pu in metal
1.0 89 89 86 89 2.0 0.045
2.9 92 90 92 88 0.6 0.014
4.7 95 Ol 95 97 0.6 0.012
Gt 93 90 88 il 0.5 0.011
5050 87 94 95 89 1.8 0.041
69.2 80 85 80 80 6.5 0.163

a]120-min samples.
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as distribution coefficients, Kq = (w/o Pu in flux)/(w/o Pu in metal), it
becomes apparent that the most favorable region for plutonium dioxide
reduction is in the vicinity of

10 W/o magnesium, as shown by the

Figure 1
DISTRIBUTION OF PLUTONIUM BETWEEN minimum of the dashed curve in
ZINC-MAGNESIUM ALLOY Figure 1. This curve represents
AND FLUXES CONTAINING the distribution coefficients as a
MAGNESIUM CHLORIDE function of magnesium concentration,

Temperature: 800°C Also included in Figure 1 for compari-
Mixing Rate: 300 rpm (solid lines) son are two distribution-coefficient

800 rpm (dotted line) curves that were obtained in other
work® in which plutonium was equil-
ibrated between liquid magnesium-
zinc alloys and magnesium chloride-
based fluxes. The minimum at about
10 w/o magnesium is evident in all
three curves, and it can be seen that
the distribution coefficients increase
regularly with increasing concentra-
tion of magnesium ion in the flux.
Thus, for optimum reduction of
300 ma Kol plutonium dioxide, a magnesium
SO0 m/eych chloride-free flux would be indicated.
In a practical sense, however, this
effect is of little importance, since
even with a 100% magnesium chloride
flux, the plutonium distribution coef-
| L L ! ficient at 10 w/o magnesium is still

o 20 20 60 80 100 o ] f -
MAGNESIUM CONCENTRATION IN ZINC, w/o sufficiently low for satisfactory

10°

100% MqCl,

w/0 PuIN FLUX
w/o PuIN METAL

475 m/oMqCl,
475m/o CaCly

5.0 m/o MgF,
(PuO, REDUCTION DATA)

{ie i

DISTRIBUTION COEFFICIENT, Ky =

107

reductions,

C. Yields and Losses

The data in Tables I and III are based on a final plutonium concen-
tration of 1.0 w/o in the metal phase upon complete reduction. Material
balances, which depend mainly upon the metal samples, showed consider-
able scatter in the various experiments, and they were biased on the low
side, It was suspected, and later confirmed, that the apparent losses
resulted from interaction of the metallic plutonium with impurities (prob-

ably tantalum) in the metal solution to form insoluble species. This effect

was shown in one experiment in which the reduction yield based on the

filtered metal sample was 90%, compared to a yield of 99.4% based on the
plutonium content of the flux. Analyses of two pie-shaped samples cut
from the solidified metal ingot showed that all of the reduced plutonium
was present in the metal phase. In general, the results indicate that the
plutonium dioxide reduction yields are inherently greater than 99%.
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D. Demonstration Experiment

As a final test of the zinc-magnesium reduction procedure, a dem-
onstration experiment was performed in which sufficient plutonium dioxide
was used to produce 30 g of plutonium metal upon complete reduction. The
charge consisted of a total of 600 g of metal (540 g of zinc and 60 g of mag-
nesium), 300 g of flux (47.5 m/o CaCl,-47.5 m/o MgCl,-5.0 m/o MgF,),
and 35.65 g of plutonium dioxide (84.1 w/o plutonium). The reactants were
heated to 800°C in a tantalum crucible and agitated at 800 rpm for 120 min
under an argon atmosphere. At the end of the reduction period, the molten
contents of the tantalum crucible were poured into a graphite mold. The
plutonium-zinc-magnesium ingot was cleaned and charged along with a zinc
ingot (which resulted from washing residual, unpoured, metallic plutonium
from the tantalum crucibles with liquid zinc) to a cone-shaped, tantalum
distillation crucible,

After the system had been held overnight at 20 microns pressure,
heat was applied and the bulk of the zinc was vaporized at 500°C. Final
zinc and magnesium removal was then attempted at 700°C. Examination
of the distillation crucible showed an irregular metallic product that had
not consolidated in the cone of the crucible. The weight of the product
exceeded 30 g, and it very likely consisted of a mixture of plutonium and
a plutonium- zinc intermetallic compound. More magnesium was added,
and the distillation was again performed at 700°C. The result was con-
solidated plutonium metal in the cone of the crucible. The weight of the
product was 30.1 g, which is in good agreement with the amount of plutonium
added initially as oxide and indicates complete reduction of the oxide.
Analysis of the flux showed a reduction yield in excess of 99%.

A sample of the plutonium product was removed from the ingot and
submitted for spectrochemical analysis. A comparison of these results and
a spectrochemical analysis of the initial plutonium dioxide is given in
Table IV. Apparently, metallic plutonium of good purity can be prepared
by this method, although it is suspected that some tantalum, which was not
detected by the spectrochemical analysis, might have been present,

Table IV

COMPARATIVE ANALYSES OF PLUTONIUM DIOXIDE STARTING MATERIAL
AND PLUTONIUM METAL PRODUCT

Spectrochemical analysis; results in ppm

Plutonium Plutonium Plutonium Plutonium

Element Dioxide Metal Element Dioxide Metal

Al 180 100 Mn 30 10

B 1 <2 Na 50 <5

Ba 1 <1 Ni 90 25

Ca 140 25 Pb 8 10

Cr 100 1 Sn <5 10

Fe 100 75 Sr <0.5 <0.01

K 10 <5 Zn =5 15

Mg 300 85
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IV. DISCUSSION

The experimental results suggest that the reduction of plutonium
dioxide by zinc-magnesium alloy proceeds by a different general mechanism
than the reductions of uranium and thorium oxides. For example, plutonium
dioxide reduction was much faster, the rate and extent of reduction were
practically independent of flux composition, and the final extent of reduction
appeared to be limited only by the distribution coefficient of plutonium
between the flux and metal phases, In these respects, the plutonium dioxide
reductions were more similar to results obtained with uranium and thorium
halides than to those obtained with the oxides. As in the case of uranium
and thorium, the low activity coefficient of plutonium in zinc-rich solutions
contributes to the free energy change of the reduction reaction. The solu-
bility of plutonium in zinc is about 0.4 w/o at 600°C and 9 w/o at 800°C.

The effects of temperature and agitation on the reduction were not
investigated specifically. Since the temperature coefficients of the reduc-
tion rates of uranium and thorium oxides are small, the temperature of
800°C used in these studies could probably be reduced to 650 or 700°C for
the reduction of plutonium dioxide. Effective mixing of the flux and metal
phases was essential for satisfactory reduction rates of uranium and
thorium oxides, but it may be of less importance in the case of the more
easily reducible plutonium dioxide.

Previous work with uranium and thorium halides, together with
some other experience with plutonium halides, indicates that the chlorides
or fluorides of plutonium should be reduced at least as easily as the oxides,
However, one of the advantages of oxide reduction over the use of pluto-
nium tetrafluoride as a starting material is that the neutron emission
resulting from (a,n) reactions is greatly diminished. Under optimum con-
ditions, plutonium losses in the liquid-metal reduction procedure should
be less than 0.5%, and the indications are that a certain degree of purifi-
cation is achieved, particularly from electropositive elements such as the
alkali and alkaline earth metals.

Although tantalum equipment was used in these studies, other
materials would be more suitable for a practical process. Tungsten ves-
sels, for example, have proven to be satisfactory for the reduction of
uranium oxide on a 2-kg scale.” Ceramic or ceramic-lined vessels may
be desirable for the retorting and product-consolidation step.
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V. CONCLUSIONS

The liquid zinc-magnesium reduction procedure appears to have
several possible advantages for the production of plutonium metal. Pluto-
nium dioxide is readily reduced by zinc-magnesium alloy. For example,
over 99% reduction occurred within 30 min in experiments using 5 to 10 W/O

magnesium-zinc alloy. Alloys of higher magnesium concentration resulted
in incomplete reductions.

The effect of salt composition on the reduction was not as pronounced
as that observed in reductions of U304 and thorium dioxide. The extent of
plutonium dioxide reduction is limited by the distribution coefficient of
plutonium between the salt and metal phases. Salts with low magnesium
chloride concentrations are preferred, since the plutonium distribution to
the salt decreases with decreasing magnesium chloride concentration.

The reagents used in the process are inexpensive, and the zinc and
excess magnesium can be recycled. If plutonium dioxide is used instead of
fluoride as the starting material, the cost of fluorination is eliminated, and
the neutron hazard arising from (a,n) reactions is greatly decreased.
Apparently, plutonium metal of good purity can be produced in yields ex-
ceeding 99%. Serious consideration of this type of process for the produc-
tion of metallic plutonium, however, would require considerable additional
information to define the optimum conditions and to determine the engi-
neering and economic feasibility.
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